嘉義市第37屆中小學科學展覽會

作品說明書

科 别:地球科學

組 別:國中組

作品名稱:嘉義地區空氣汙染的探討

關鍵詞:空汗

編號:

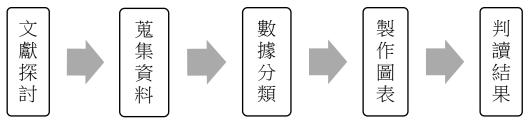
摘要

本研究中主要探討嘉義地區的各種空氣汙染物與濃度變化,利用環保局測站的 102~106 觀測資料繪製成圖表,並以現有的地科知識背景討論出各項污染物形成原因與機制。為求更精確的了解各時間尺度下的濃度變化,我們將觀測資料經數學方法處理後,製成逐時、逐月與逐年的濃度變化圖。另外我們以六種氣象因子為主要探討對象,了解大氣的條件與變化對污染濃度產生的影響。

壹、研究動機

近年空氣汙染指數日漸提高,空氣呈現一片灰濛濛的樣子,許多民眾也開始擔心此問題, 而身為學生的我們也很想了解背後的原因。因此,我們決定運用所學的地科知識,著手展開關 於空汙的研究。

貳、研究目的


- 一、以不同尺度(4、月、日)探討嘉義地區造成空汙的各項物質濃度變化(0、N0x、S0₂、<math>0₃、PM2.5、PM10
- 二、了解嘉義市造成空汙各項物質濃度變化和氣象因子(溫度,風速,風向,降雨量,氣壓) 相關性

參、研究設備與器材

- 一、行政院環境保護署空氣品質監測網歷年監測資料
- 二、中央氣象局歷年氣象觀測資料
- 二、紀錄與分析軟體
 - (一) Microsoft Word: 進行紀錄
 - (二) Microsoft Excel: 彙整數據、圖表

肆、研究過程與方法

研究流程

一、文獻探討

(一)嘉義市的環境負荷變化

1、人口密度變化

人口消費行為會伴隨產生環境污染負荷,因此人口的多寡會影響空氣汙染狀況。由表 1-1人口數統計表顯示嘉義人口成長趨勢趨緩並有減少情形,但嘉義市人口密度資料截至 109年(1月),人口密度為4,474.41人/km2,位居台灣第二名,第一名為台北市 表 1-1 嘉義市人口數彙整表

7			
年度	人口數	人口密度	成長率
100年	271, 526	4, 524	-0.32%
101年	271, 220	4, 518	-0.11%
102年	270, 872	4, 513	-0.13%
103年	270, 883	4, 513	0.004%
104年	270, 366	4, 504	-0.19%
105年	269, 815	4, 495	-0.20%
106年	269, 879	4, 496	0.0022%

2、車輛密度(移動污染源)

移動污染源主要是各類機動車輛,排放的污染物有懸浮微粒、一氧化碳、碳氧化合物、氮氧化物等。依照交通部統計資料,嘉義市車輛密度遠高於中部、雲嘉南、高屏空品區之其他縣市。當中尤其以機車空氣污染負荷最高,其次汽油車。負荷倍數與人口密度相當,顯示移動污染源的管制,應為注重的項目。

嘉義市歷年車輛數變化趨勢,如表1-3所示,車輛數自102年已有削減趨勢,車輛數以機車減少數較為明顯,主要是公路總局於102年開辦老舊機車切結報廢業務,使不堪使用之老舊機車報廢數增加,減少污染機車上路機會,由表1-2可知近五年機車數自101年至105年,減量趨勢明顯。

表1-2、嘉義市機動車輛數彙整表(101-105年) 年度

年度	大客車	大貨車	小客車	小客車	小貨車	機車	特種車	總計
			自用	營業				
101年	659	2, 466	73, 069	521	9, 594	204, 43	821	291, 562
						2		
102年	665	2, 451	74, 423	562	9, 630	187, 94	826	276, 498
						1		
103年	670	2, 441	76, 205	598	9, 761	181, 92	836	272, 438
						7		
104年	678	2, 473	78, 242	620	9, 842	182, 03	866	274, 760
						9		

105年	710	2, 491	79, 188	681	9, 754	180, 15	889	273, 863
						0		
變化率	19.9%	-11.3%	15.0%	44.6%	7. 2%	-1.2%	16.5%	3.4%

- 1. 資料截至105年11月底止,依機關統計公布時程統計。
- 2. 資料來源:交通部統計查詢網

(http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100)

3、工廠密度(固定污染源)

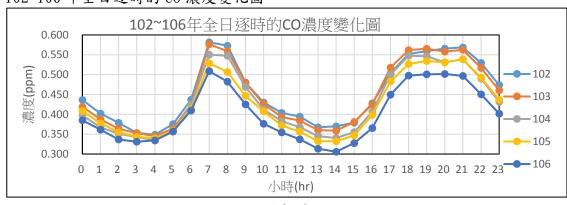
工廠屬於固定污染源亦為排放空氣污染物的主要對象。嘉義市固定空氣污染源的列管 工廠部分,近12年趨勢呈現負成長,都市發展以商業為主,產業以從事商業、服務業的 產業較多,目前大型的工廠,僅為嘉義市政府環境保護局所轄之一座垃圾焚化爐,其次 為臺灣中油股份有限公司溶劑化學品事業部。

(二)、本研究以環保署所訂之AQI空氣品質指標中的6種指標汙染物為研究對象,表1-3為6種指標汙染物基本資料介紹

表1-3各空氣品質指標汙染物彙整

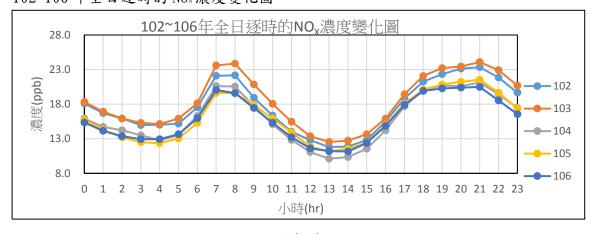
	性質	來源
CO	無色、無味、無臭、無刺激性氣體	以化石燃料不完全燃燒及汽車所排
		放的廢氣燃燒不完全為主。
NOx	NO無色無味,稍溶於水。	機動車排氣、燃燒化石燃料過程的
	NO2具刺激味道、赤褐色氣體,易溶	高温造成氮或氮化物氧化而成。
	於水,是造成酸雨的主因之一。	
S02	具刺激臭味之無色氣體。易溶於水,	大部分來自發電廠燃燒煤礦和石
	是引起酸雨的主要物質之一。	油。
03	在常溫下是一種有特殊臭味的淡藍色	地表主要來源為汽機車排氣中氮氧
	氣體,微溶於水。	化物經光化學反應而生成
PM2.5	指粒徑2.5μm以下之粒子,易吸附有	可分為自然產生、人為產生及大氣
	毒害的物質	化學產生
PM10	粒徑在10μm以下之粒子	道路揚塵、車輛排放廢氣、露天燃
		燒等。

各項空氣污染物之空氣品質標準規定如下:


項目	標準值	單位		
V向 LA 公公 AV AN (TCD)	二十四小時值	二五〇	μg/m³(微克/立方公尺	
總懸浮微粒(TSP)	年幾何平均值	ー三〇	μg/ III (俶兄/ 业为公人)	
粒徑小於等於十微米(μm)	日平均值或二十四小時值	一二五	μg/m³(微克/立方公尺)	
之懸浮微粒(PM10)	年平均值	六五	μg/ III (俶兄/ 亚ガ公八)	
粒徑小於等於二・五微米	二十四小時值	三五	μg/m³(微克/立方公尺)	
(μm)之懸浮微粒(PM25)	年平均值	一五	μg/ Ⅲ (俶兄/ 业为公尺)	
	小時平均值	二五		
二氧化硫(SO ₂)	日平均值	\circ -	ppm(體積濃度百萬分之一)	
	年平均值	○· ○=		
- 5 11 5 (NO)	小時平均值	一五		
二氧化氮(NO ₂)	年平均值	○・ ○五	ppm(體積濃度百萬分之一)	
た n -山 (CO)	小時平均值	三五	(刚从油片一七八)。	
一氧化碳(CO)	八小時平均值	九	ppm(體積濃度百萬分之一)	
白与(0)	小時平均值	O· -=	(贴仕油点 丁 女 八)	
臭氧(03)	八小時平均值	〇· 〇六	ppm(體積濃度百萬分之一)	

二、研究方法

- (一)本研究中,選用(NOx、CO、SO2、O₃、PM2.5、PM10、)作為研究目標,了解嘉義地區空氣 汙染情形。
- (二)由行政院環境保護署中的歷年監測資料庫中取得2013~2017年嘉義地區各汙染物質的資料,並製成圖表,共做了三大類型的濃度比較圖,包括逐時濃度、逐月濃度、逐年濃度;逐時濃度主要探討一天中濃度變化情形;逐月濃度主要瞭解的是一年之中汙染最嚴重的月份;逐年濃度主要分析五年內汙染物濃度是否有改善。
- (三)由中央氣象局取得 2017 年嘉義地區溫度、氣壓、降雨量、風向、風速的資料,分析空 氣汙染的各項汙染物質濃度與氣象因子的關係


伍、研究結果與討論

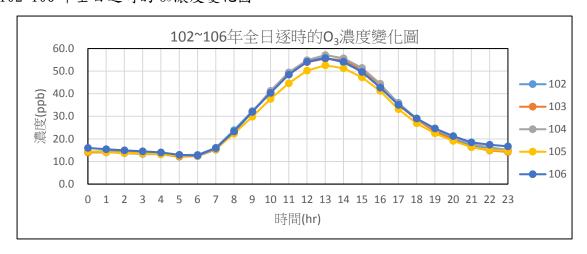
- 一. 嘉義市 CO、NOx、SO2、O₃、PM2. 5、PM10 等空氣污染成分濃度的變化
 - (一)近五年逐時濃度
 - 1、102~106 年全日逐時的 CO 濃度變化圖

圖(一)

- (1)由圖(一)可看出CO的濃度一天中呈雙峰狀態,清晨濃度先降後升,在早上4點達最低,約於7點攀升至一天中的最高值後又下降,於13-14點降至最低值,之後濃度又升高,到18-21點攀升到另一波高值,之後濃度下降。
- (2)比較五年的濃度變化曲線,CO的濃度有逐年下降的趨勢
- (3)CO 的濃度上升時間為上下班時間,可推知是上下班使用的交通工具造成的,一氧化碳排放來源屬石化燃料的不完全燃燒,其各類交通污染源為主要排放對象,排放來源以 汽車和機車,嘉義市普遍以汽機車代步,大眾運輸系統不彰,故上下班使用的交通工 具所排放的廢氣造成 CO 濃度飆升。
- (4)兩個高點數值和兩個最低數值差不多,兩個高峰值以晚上的波段高峰持續時間較長, 因為下班後大家依然在外面的活動如用餐、接送小孩等等
- 2、102~106 年全日逐時的 NOx 濃度變化圖

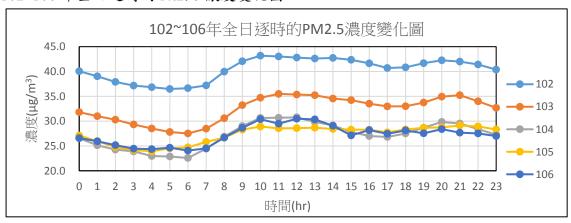
圖(二)

- (1)由圖(二)可看出NOx的濃度一天中呈雙峰狀態和CO濃度一致,清晨濃度先降後升,在 早上4點達第一波低點,約於7-8點攀升至一天中的高值後又下降,於13-14點降至最低值,之後濃度又升高,到18-21點攀升到另一波高值之後濃度下降。
- (2)二氧化氮排放來源仍屬燃料燃燒,其來源廣泛,各類交通污染源為主要排放對象,因此造成嘉義市NOx的濃度變化原因應和CO一樣,為交通流量造成的。
- (3)和CO濃度變化不同處是NOx的濃度最低值不是在早上而是在下午的低點,與O3有著近 乎相反的趨勢。此現象與光化學反應有著密切關係,而非單純汙染物排放之


3、102~106 年全日逐時的 SO2 濃度變化圖

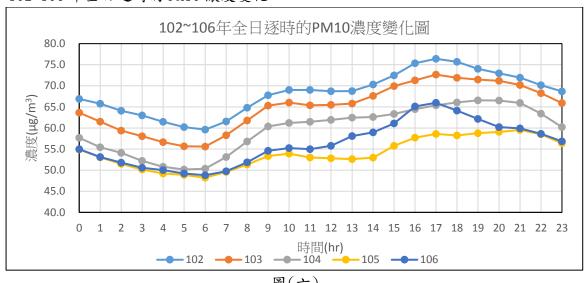
圖(三)

- (1)嘉義市SO2全日逐時濃度變化情形如圖,由濃度趨勢顯示SO2的濃度一天中呈雙峰狀態,清晨濃度先降後升,在早上2~6點達第一波低點後開始上升,8~9點攀升至一天中的高值後又下降,於13點左右降至第二波低值,之後濃度緩慢升高,到19-21點攀升到另一波高值之後濃度下降。
- (2)SO₂濃度變化和CO、NOx濃度變化不同處是兩個高峰值時間SO₂皆較晚一小時,SO₂的濃度最低值是在早上清晨時間,最高值主要是落在早上8點這一波
- (3)比較五年的濃度變化曲線,102和103年差不多,104年明顯下降,105年上升一些, 雙峰高值差不多,106年濃度又增加,且晚上19點的濃度高值高於白天8點的高點濃度 (4)造成SO2的濃度變化原因應也為交通流量造成的,才會有雙峰現象。


4、102~106 年全日逐時的 0₃濃度變化圖

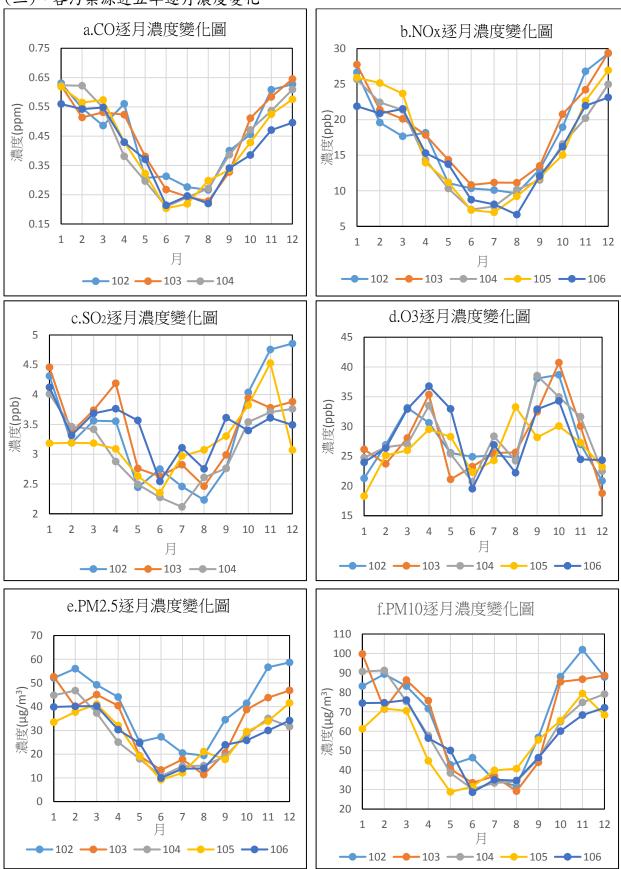
圖(四)

結果與討論:


- (1)嘉義市 (03)全日逐時濃度變化情形如圖, (03)從 6 點開始上升到 13 點到達最高點接下來 就逐漸下降,
- (2)由濃度趨勢顯示光化污染物特性,日間隨日照時間增加而濃度增加,至13時至14時 濃度達當日最高,午後隨日照減弱,污染物濃度減低,五年趨勢相當一致。
- 5、102~106 年全日逐時的 PM2.5 濃度變化圖

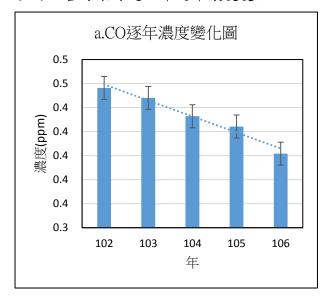
圖(五)

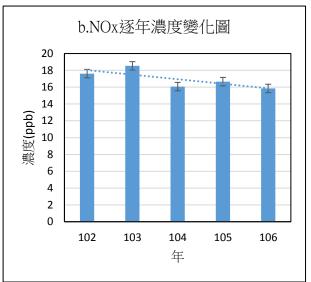
- (1) 嘉義市 PM2 全日逐時濃度變化情形如圖(五),逐時濃度清晨 6 時達最低,之後濃度開始上升,到 10 點達最高值,10~16 點濃度大約維持固定,在17~18 點間有些許下降後又上升,21 點後下降。
- (2)由濃度趨勢顯示,自7時起各項活動增加,使得污染物濃度持續提高。
- (3)由每年全日逐時濃度曲線可看出,PM2.5的濃度102~104年間有明顯下降,104~106年間維持一定。

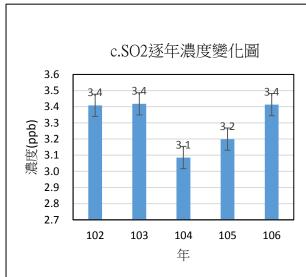

6、102~106 年全日逐時的 PM10 濃度變化

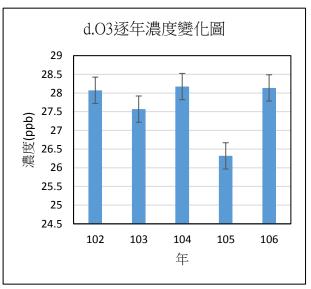
圖(六)

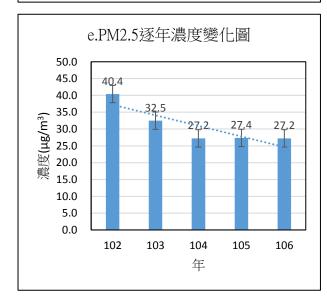
- (1) 嘉義市 PM10 全日逐時濃度變化情形如圖(六),逐時濃度以清晨 6 時最低,之後濃度 開始上升,到9~13點左右維持固定,14點後濃度再次上升到17點達最大值,之後緩 慢下降。
- (2)由濃度趨勢顯示,自7時起各項活動增加,使得污染物濃度持續提高反映濃度受到人 為擾動的影響,懸浮微粒濃度具改善情形
- (3)由每年全日逐時濃度曲線可看出,PM10 的濃度 102~105 年間有逐年下降趨勢,但 106 年 9 點以後的濃度又大於 105 年的濃度

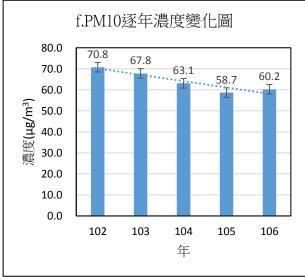

(二)、各污染源近五年逐月濃度變化

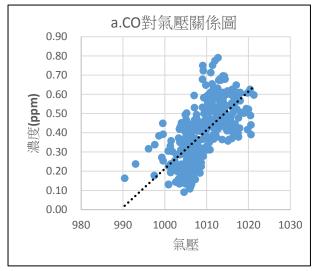


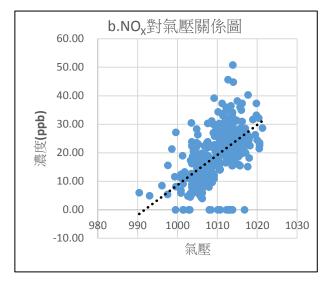

圖(七)

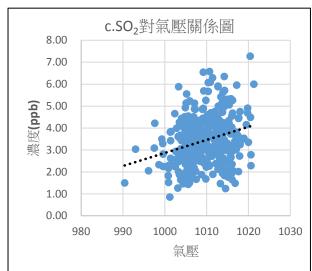

- (1)由圖(七)a可知 CO 濃度在 102~106 年各月濃度趨勢普遍於 6、7、8 月濃度最低,11-4 月濃度較高,具季節型態。
- (2)由圖(七)b可知NO2濃度在102~106年各月濃度普遍於5、6、7、8月濃度最低,11-3月濃度較高,具季節型態,各地區濃度均符合空氣品質標準(50ppb)。
- (3)由圖(七)c 可知 SO2 濃度在 102~106 年逐月濃度變化圖可知較顯凌亂,濃度高峰分別 於 10-1 月、3-4 月; SO2 濃度於 5-9 月濃度普遍良好,在 6 月到達最低點,
- (4)由圖(七)d 可知 03 在 102~106 年逐月濃度具季節型態,全年各月濃度呈現雙峰型態, 高峰值分別於 3-4 月、9-10 月。
- (5)高峰分別屬春季、秋季,季節季風轉換期間,常因季風微弱導致污染物累積,也使氮氧化物、反應性碳氫化合物經日光照射後產生之二次污染物持續成長,促成空氣品質不良, 顯示上述兩期間於管制上,應就燃燒源、交通源、VOCS 排放源實施污染物管理,避免過度排放,促成臭氧濃度惡化。
- (6)由圖(七)e、f 可知 PM2.5和 PM10 在 102~106 年逐月整體濃度趨勢相似,具季節型態,以10-3月濃度較高,5-8月濃度較低,顯示10-4月為主要的粒狀污染物管制重點期間,透過加強逸散性污染源排放管理、管制工作,避免污染源過度排放,使污染物排放負荷增加促成空氣品質不良。
- 結論: 嘉義各項空氣污染物逐月濃度趨勢,除 03 外,普遍呈現 U 型,污染物濃度於 5-9 月濃度較低,10-4 月濃度較高,具季節性變化

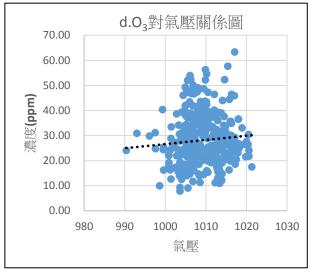

(三)、各污染源近五年逐年濃度變化

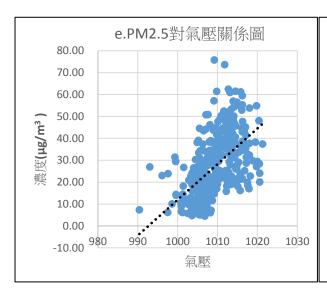


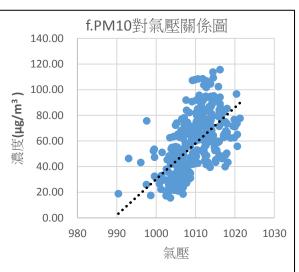


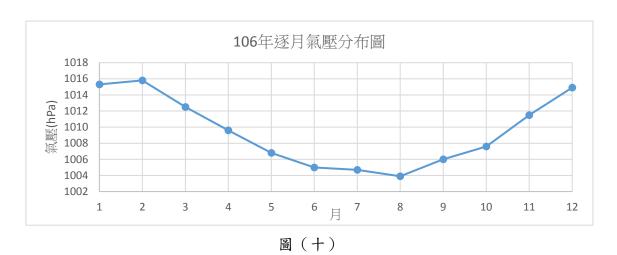

圖(八)

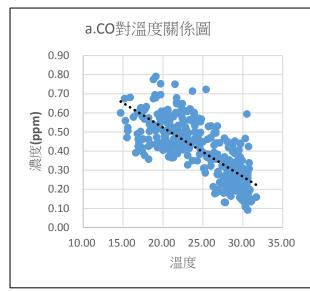

- (1)由圖(八)a可看出 CO 在 102~106 年逐年平均濃度,有逐年下降的趨勢,一氧化碳排放 來源屬石化燃料的不完全燃燒,各類交通污染源為主要排放對象,故一氧化碳濃度呈現 改善,顯示車輛加嚴排放標準、老舊車輛淘汰、低污染車輛推廣使用,對於 CO 濃度改 善有良好效益。
- (2)由圖(八)b 可看出嘉義 NO2 濃度從 102 到 106 年有逐年緩和下降的趨勢, 氮氧化物濃度 改善, 受到車輛的氮氧化物排放標準加嚴的影響, 並隨老舊車輛的淘汰, 使得排放量減 低, 其次固定污染源的空氣污染防制費制度, 也使得固定源的氮氧化物排放量降低。
- (3)由圖(八)c 可看出嘉義 SO2濃度 104 年有明顯下降,105 到 106 又上升。
- (4)由圖(八)d 可看出嘉義 ()3 濃度近五年的變化起起伏伏,103 和 105 年較低,其他三年則 差不多
- (5)由圖(八)e、f 可看出嘉義 PM2.5 和 PM10 濃度從 102 到 106 年有逐年下降的趨勢,懸浮 微粒/細懸浮微粒有改善

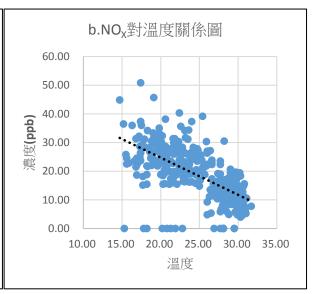

三、空氣汙染的各項汙染濃度與氣象因子的關係

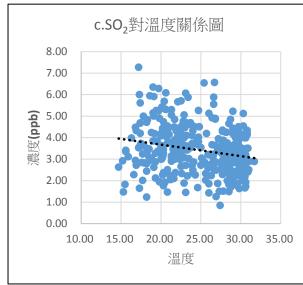

(一)氣壓和各項汙染濃度關係

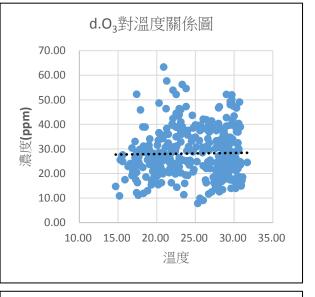


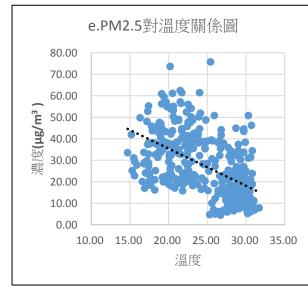


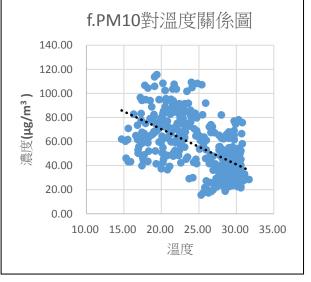
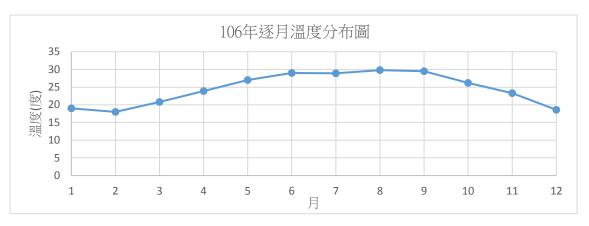


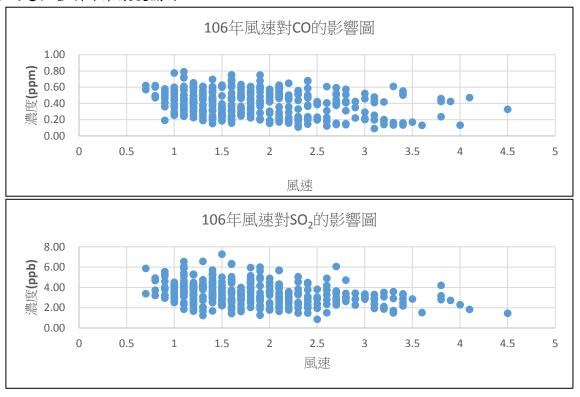

圖(九)

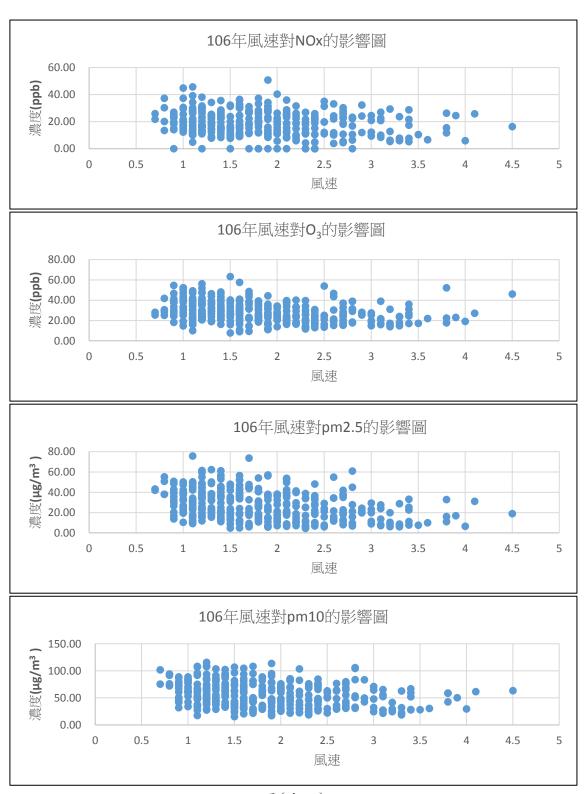



- (1)由圖(九)a、c、e、f可得氣壓越高,汙染物質濃度越高且趨勢線斜率較大。
- (2)圖(九)b、d的汙染物濃度也隨壓力增加而上升,但斜率較小。
- (3)圖(十)可知冬末春初氣壓值較高,因空氣向下流動,導致氣壓上升,空氣向下流動,汙染物質不易擴散故易造成空氣汙染嚴重。
- (4)夏季氣壓值較低,因空氣向上流動,導致氣壓下降,空氣向上流動,污染物質會擴散故不 易有空氣汙染現象。


(二)溫度和各項汙染濃度關係

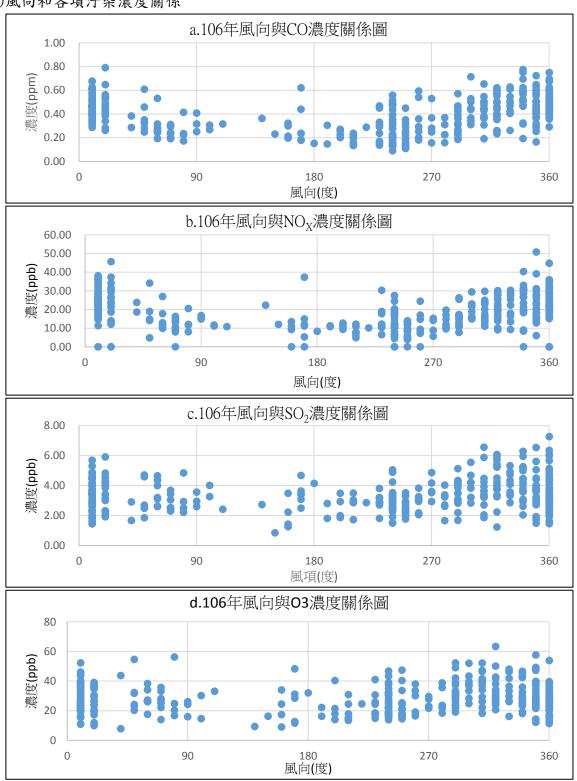

圖 (十一)

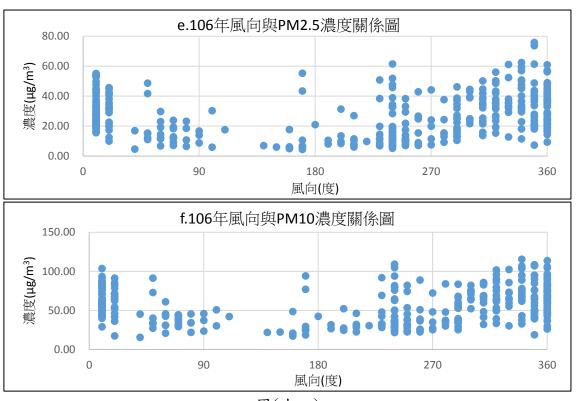


圖(十二)

- (1)由圖(十一)a、b、e、f 得知溫度越高, 汙染物濃度越低的趨勢, 空氣溫度高, 易形成上升氣流, 汙染源也跟著擴散會使濃度下降; 由圖(十二)可知溫度較高的季節為 6~9 月, CO、Nox、PM2.5、PM10 等汙染物質濃度因溫度因素會有明顯季節性變化。
- (2)由圖(十一)c得溫度對此物質也有溫度越高,汙染物濃度越低的趨勢較之下較不明顯。
- (3)由圖(十一)d可得溫度對此物質幾乎是沒有影響的。

(三)風速和各項汙染濃度關係

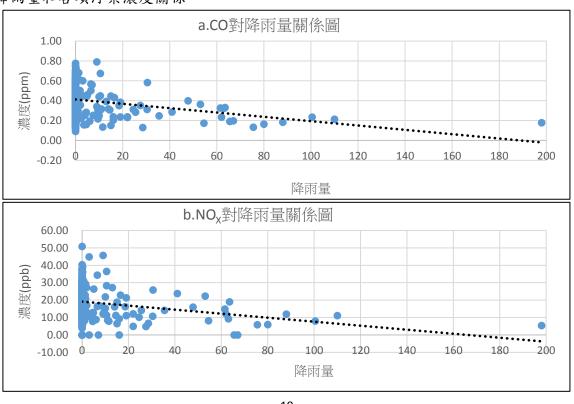


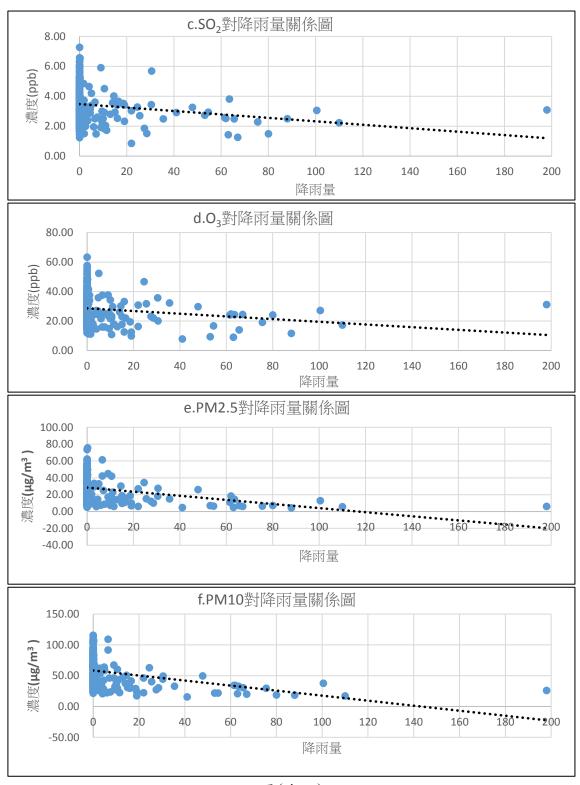


圖(十三)

(1)由圖(十三)可知風速對各項汙染濃度雖然影響不大,但還是可以看出風速大時,汙染物濃度會偏低。

(四)風向和各項汙染濃度關係





圖(十四)

- (1)由圖(十四)可看出當風向大約 330 到 30 度偏北風時, 汙染物濃度較高。
- (2) 風向大約 100 到 220 度偏南風時, 汙染物濃度較低。

(五)降雨量和各項汙染濃度關係

圖(十五)

- (1)由圖(十五)可以發現當雨量相當稀少(近乎零)時,各汙染物質濃度對應值的級距很大,從 高濃度與低濃度多有,推測雨量稀少時尚有其他重要變因會影響汙染物質濃度。
- (2)由趨勢線可以發現, 六種汙染物質最大的特徵是雨量越多, 濃度值即會越低。

陸、結論

- 一、嘉義地區 CO、NO_x、SO₂、O₃、PM2.5、PM10 逐時濃度
 - (一)CO 與 NOx和 SO2逐時濃度皆屬於雙峰型,清晨濃度先降後升,在早上 4 點和下午 13-14 點達最低,7點和 18-21 點攀升至一天中的最高值。
 - (二)03逐時濃度呈現單峰狀態,從6點開始上升到13點到達最高點接下來就逐漸下降,。
 - (三)PM2.5和PM10逐時濃度清晨6時達最低,到10點達最高值,10~13點濃度大約維持固定,PM2.5在17~18點間有些許下降,PM10則17點再次上升達最大值。
- 二、CO、 NO_x 、 SO_2 、 O_3 、PM2.5、PM10 逐月平均普遍於6、7、8 月濃度最低,11-4 月濃度較高,具季節型態,但 SO_2 濃度在 $102\sim106$ 年逐月濃度變化圖可知較顯凌亂。
- 三、嘉義地區 CO、NO_x、SO₂、O₃、PM2.5、PM10 逐年濃度
 - (一)CO 和 NO2 在 102~106 年逐年平均濃度有逐年下降的趨勢,因為老舊車輛的淘汰和車輛的氦氧化物排放標準加嚴的影響。
 - (二)S02 濃度 104 年有明顯下降,105 到 106 又上升,03 濃度 103 和 105 年較低,其他三年則差不多。
- (三)PM2.5和PM10濃度從102到106年有逐年下降的趨勢,懸浮微粒/細懸浮微粒有改善。。四、空氣汙染的各項汙染濃度與氣象因子的關係
 - (一)溫度高時濃度會較低,氣壓越高,汙染物質濃度越高,此結果可以應證季節濃度變化
 - (二)風速對各項汙染物濃度影響不大,風向為北風時汙染物濃度較;偏南風時汙染物濃度較低。
 - (三)降雨量大時各項汙染物濃度值較低。

柒、参考資料

《科展文獻》

- 盧昱璇、郭怡彤、黄柏睿(2015)穹頂之下--高雄地區三種空氣汙染物時空特徵之探討(第 55 屆中小學科學展覽會)
- 林華恩、楊于晨、葉家榮(2016) 漫漫黃砂九芎城--宜蘭地區汙染物濃度的探討(第 56 屆中 小學科學展覽會)
- 嘉 義 市 空 氣 污 染 防 制 計 畫 書 (104~109 年版)