嘉義市第37屆國民中小學科學展覽會

作品說明書

科 別:化學科

組 別:國中組

作品名稱:影響魚腥草抗氧化活性因子之研究

關 鍵 詞:魚腥草、抗氧化活性

編號:

影響魚腥草抗氧化活性因子之研究

摘要

在本實驗中,我們以在學校圍籬旁的香草園採摘的魚腥草,經清洗後分離成根、莖及葉 三部分,在烘箱乾燥後磨成粉,分別用蒸餾水及95%酒精進行萃取,分別得根、莖及葉各萃 取液,作為本次實驗之儲備液。

取各萃取液,試驗比較(一)不同萃取溶劑(二)不同之根莖葉植株部位(三)萃取液在不同溫度萃取(四)不同濃度萃取液等因子,研究抗氧化活性的差異。研究方法主要是 KMnO4氧化還原滴定法、清除 DPPH 自由基能力與螯合亞鐵離子之能力測定等三種方法。以滴定消耗 KMnO4體積量及分光光度計測量吸光度下降量,推算魚腥草各萃取液之抗氧化活性。

經實驗結果顯示:(一)溶劑種類因子:魚腥草水萃取物具有最明顯的還原力與清除 DPPH 自由基能力及螯合亞鐵離子之能力,由此得知魚腥草水萃取物具有較佳的抗氧化活性,(二)植株部位因子:葉部之消耗 KMnO4用量、對 DPPH 自由基清除率及螯合亞鐵離子之能力均最高,莖部次之,植株根部則最低。(三)溫度因子:高溫時具有較高之抗氧化活性。(四)濃度因子:萃取液在高濃度時,有較高之抗氧化活性。

壹、研究動機

每當上體育課走過校園的圍籬旁的雜草時,風一吹來時常聞到一股類似魚的腥味的臭味,百思不解覺得很好奇,上完體育課,迫不及待地去請老師到現場了解,才知道原來雜草中有一種叫魚腥草的植物,民間常用來煮茶喝,據聞對許多身體症狀有良好的療效。引起了我們對魚腥草的高度研究興致,便邀集同學開始著手搜尋文獻,展開了這次的實驗活動。

貳、研究目的

- 一、認識魚腥草植物,並製備根莖葉萃取液
- 二、探討並比較魚腥草(Houttuynia cordata)萃取液之抗氧化活性。
- 三、影響魚腥草抗氧化活性因子之探索與比較。
- 四、喚起大家對天然植物資源的愛惜與重視。

參、研究設備及器材

純水、20% Na₂CO₃、95%酒精、0.05M KMnO₄、0.20mM DPPH、5mM Ferrozine、魚腥草、燒杯、量筒、容量瓶、錐形瓶、分析試管、試管架、滴管、微量吸管、玻璃棒、濾紙、減壓濃縮機分光光度計(PRO-729 型/320-999nm)、低溫冷凍乾燥機、電動攪拌器、高速磨粉機、滴定裝置、抽濾漏斗、分析天平、酒精燈、數位相機和筆電等。

a.魚腥草根莖葉粉末

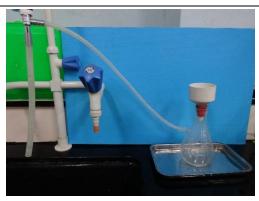
b.魚腥草根莖葉 95%乙醇萃取液

c.魚腥草根莖葉水萃取液

d.分光光度計(PRO-729型/320-999nm)

e. 烘箱

f.微量吸管(20-200/100-1000ul)


g.減壓濃縮機

h.低溫(-87℃)冷凍乾燥機

i.高速磨粉機

j.抽濾裝置

k. 0.2mM DPPH 試劑

L.電動攪拌機

m.分析天平

n.滴定裝置

圖 1. 研究設備及器材

肆、研究過程或方法

第一部分:魚腥草萃取液之製備研究

一、魚腥草植物認識

1.中文名稱:魚腥草,英文名稱:chameleon 學名:*Houttuynia cordata* 別名:折耳根、截兒根、豬鼻拱、蕺菜,客家話稱之狗貼耳

2.化學組成分:含癸醯乙醛、月桂醛、蕺萊鹼、槲皮苷、氯化鉀、α-派烯、芳樟醇、 甲基正于基甲酮等,其中癸醯乙醛、月桂醛即是導致特異臭味的因子。

3.生育環境:魚腥草生長於陰濕處或山澗邊,常可在野地、路旁、庭園樹下等較陰濕的 地方發現,大片蔓生。屬於三白草科,多年生草本雙子葉。該植物繁殖 容易,在各地方草原地常見。

4.生長特徵:

(1)根:呈乳白色,每隔數公分就有節,並附著一塊淡褐色的皮,節的周圍則長有細細的髭根。

(2)莖:約高20-60公分,部分成黑紫色,莖直立狀。

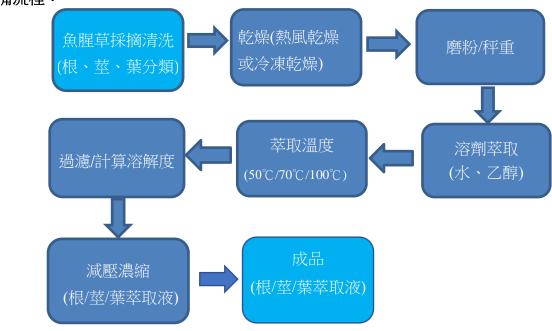

(3)葉:葉互生,葉柄長 1-4cm,基部擴大,葉片呈寬卵形或雞心形,長 4-10cm,寬 3-6cm。

圖 2.魚腥草各植株部位介紹

二、**魚腥草萃取液之製備**方法(實驗操作情形,如圖 3a~f)

(一)製備流程:

(二)實驗情形:(圖3)

圖 3.魚腥草萃取液之製備情形

第二部分:影響魚腥草抗氧化活性因子之研究

【試驗一】魚腥草萃取液對 KMnO4 還原力之測定。

- 一、實驗原理:過錳酸鉀(KMnO4)是一種強氧化劑,檢測液若能與過錳酸鉀溶液反應,使原來的紫紅色褪色可證明其具有還原力性能,若滴定消耗過錳酸鉀溶液的量愈多,可視為其還原力性能就愈強。
- 二、實驗步驟:(實驗操作情形,如圖4)

(一)不同溶劑萃取

- 1.配製0.050M過錳酸鉀酸性溶液。
- 2.以蒸餾水為溶劑,配製(v/v)50%、70%、100%(飽和原液)的根、莖、葉萃取液。
- 3.取100%檢測液與水(做空白實驗)各10.00ml,以0.050M過錳酸鉀酸性溶液滴定變為 紅色即為滴定終點。讀取消耗過錳酸鉀溶液之體積,重複實驗三次。
- 4.另取95%乙醇為溶劑之萃取液,依上列1-3步驟操作,重複實驗三次。

(二)不同之根莖葉植株部位及萃取液濃度

- 1.分別配製(v/v)50%、70%、100%的根、莖、葉水溶液檢測液。
- 2.取 0.050M過錳酸鉀酸性溶液滴定至終點,實驗三次紀錄之。
- 3.以蒸餾水做空白實驗。

(三)不同溫度萃取

- 1.分別取v/v) 50℃、70℃、100℃的根、莖、葉水萃取原液。
- 2.取0.050M過錳酸鉀酸性溶液滴定至終點,實驗三次紀錄之。
- 3.以蒸餾水做空白實驗。

【試驗二】魚腥草萃取液清除DPPH自由基能力之測定

- 一、實驗原理: DPPH是較為安定的自由基,實驗所採用的DPPH乙醇溶液為紫羅蘭色(violet),在517nm下有強的吸光值,若與試樣結合,會降低吸光值,其吸光值愈低,表示清除DPPH自由基能力愈強。
- 二、實驗步驟:(實驗操作情形,如圖5)

(一)不同溶劑萃取

- 1.用乙醇為溶劑配製0.20mM DPPH溶液。
- 2.分別用蒸餾水與95%乙醇為溶劑,配製(v/v)50%、70%、100%的檢測液。
- 3.取0.20mM的DPPH溶液1000 μL、以及魚腥草根莖葉之水萃取液(原液)各1000 μL、以 以震盪器混合均匀後,室溫下避光靜置30分鐘。
- 4.以分光光度計(Spectrophotometer, Prema729型)測其517nm之吸光值, 重複實驗三次。並取水做空白實驗。
- 5.改用乙醇為溶劑之萃取液,如2-4步驟,重複實驗三次。並取乙醇做空白實驗。

(二)不同之根莖葉植株部位及萃取液濃度

- 1.分別配製(v/v)50%、70%、100%不同濃度的根、莖、葉水萃取溶液。
- 2.依2-4步驟,實驗三次紀錄之。
- 3.取蒸餾水做空白實驗。

(三)不同溫度萃取

- 1.分別配製(v/v) 50°C、70°C、100°C不同溫度的根、莖、葉水萃取液。
- 2.依2-4步驟,實驗三次紀錄之。
- 3.取蒸餾水做空白實驗。

【試驗三】魚腥草萃取液,螯合亞鐵離子之能力測定。

- 一、實驗原理:利用 Fe^{2+} 與 Ferrozine 的複合物在 Asoz之呈色反應,可以測得樣品對 Fe^{2+} 的螯合能力。當樣品螯合 Fe^{2+} 時,會造成 562nm 吸光值的降低。
- 二、實驗步驟:(實驗操作情形,如圖6)

(一)不同溶劑萃取

- (1)取 1000μ L不同濃度 50%、70%、100%的魚腥草水萃取液,加入 100μ L之 2mM FeCl2和乙醇 800μ L,充分混合後靜置 30秒。
- (2) 再加入 100 μ L 之 5mM Ferrozine 試劑後,充分混合後避光靜置 30 分鐘。
- (3)使用分光光度檢測 562nm 之吸光值,重複實驗三次。
- (4)以蒸餾水做空白實驗。
- (5)另以95%乙醇萃取液,依步驟1-3,重複實驗三次。

(二)不同之根莖葉植株部位及萃取液濃度

- 1.分別配製(v/v)50%、70%、100%的根、莖、葉水萃取溶液。
- 2.依1-3步驟,實驗三次紀錄之。
- 3.以蒸餾水做空白實驗。

(三)不同溫度萃取

- 1.分別配製(v/v) 50°C、70°C、100°C的根、莖、葉水萃取溶液。
- 2.依1-3步驟,實驗三次紀錄之。
- 3.以蒸餾水做空白實驗。

a.準備魚腥草根莖葉萃取液及 KMnO4溶液等藥品

b.以移液管吸取試樣準備 滴定實驗

c.徐徐滴入 KMnO4 溶液並搖 動錐形瓶使充分反應.

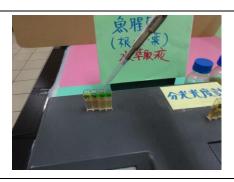
d.紀錄實驗數據

▲ 圖 4.魚腥草根莖葉萃取液對 KMnO₄還原力之測定

a.準備魚腥草根莖葉萃取液及 DPPH 溶液等藥品

b.以微量吸管吸取 DPPH 試劑 準備吸光度測定實驗

c.避光 20 分鐘使之充分反應.



d.測吸光值,紀錄實驗數據

▲ 圖 5. 魚腥草根莖葉萃取液清除 DPPH 自由基能力測定

a. 準備魚腥草根莖葉萃取液 及等 Ferrozine 試劑

b. 加入 5mM Ferrozine 後,充分 混合後避光靜置

c.避光 30 分鐘使充分反應.

d.測吸光值,紀錄實驗數據

▲ 圖 6.魚腥草根莖葉萃取液螯合亞鐵離子能力測定

伍、研究結果

第一部分: 魚腥草萃取液之製備研究結果

(一)新鮮的魚腥草(植株含根、莖、葉) 莖部 根部 (二)魚腥草根、莖、葉--粉末 (三)魚腥草根、莖、葉 水萃取液。 (四)魚腥草根、莖、葉 95%乙醇萃取液。

0

第二部分:影響魚腥草抗氧化活性因子之研究結果

【試驗一】魚腥草萃取液-對 KMnO4還原力之測定。

(一)不同溶劑萃取-對 KMnO4還原力之測定。

1.實驗結果:還原力 :葉>莖>根 ;水萃取液>乙醇萃取液

2.實驗數據:表 1A 各不同溶劑萃取原液(100%)消耗 0.05M 過錳酸鉀溶液體積(ml)

溶劑	水			95%乙醇			醇	
次數	1	2	3	平均	1	2	3	平均
空白	0	0	0	0	0.60	0.80	0.70	0.70
根	15.60	14.00	16.30	15.30	11.80	13.30	12.10	12.40
莖	28.00	27.50	30.00	28.50	23.00	25.50	23.50	24.00
葉	36.50	30.00	38.50	35.00	32.00	30.10	32.40	31.50

(二)不同之根莖葉部位及水萃取液濃度-對 KMnO4 還原力之測定。

1.實驗結果: 還原力 : 葉>莖>根 ; 濃度 100% > 70% > 50%

2.實驗數據:表 1B 不同植株部位及水萃取液濃度消耗 0.05M 過錳酸鉀溶液體積(ml)

部位	根			莖			葉		
次數	50%	70%	100%	50%	70%	100%	50%	70%	100%
1	8.80	12.80	15.00	17.60	22.00	29.00	31.30	31.40	34.80
2	8.70	12.80	15.50	18.20	23.80	27.30	28.90	31.70	35.90
3	8.30	11.90	14.30	17.00	24.70	27.70	29.80	32.00	34.901
平均	8.60	12.50	14.90	17.60	23.50	28.00	30.00	31.70	35.20

(三)不同溫度萃取-對 KMnO4還原力之測定。

1.實驗結果: 還原力 : 溫度 100℃ > 70℃ > 50℃ ; 葉>莖>根

2.實驗數據:表 1C 不同溫度水萃取原液-消耗 0.05M 過錳酸鉀溶液體積(ml)

部位		根			莖			葉	
次數	50°C	70°C	100°C	50°C	70°C	100°C	50°C	70°C	100°C
1	12.20	15.00	18.40	22.90	25.00	29.00	30.90	34.70	38.20
2	11.60	14.80	16.90	21.80	26.80	27.90	32.00	33.40	38.00
3	12.2	14.3	17.2	23.10	24.70	28.60	31.60	33.90	39.30
平均	12.00	14.70	17.50	22.60	25.50	28.50	31.50	34.00	38.50

【試驗二】魚腥草萃取液清除 DPPH 自由基能力之測定

(一)不同溶劑萃取-清除 DPPH 自由基能力之測定

1.實驗結果:清除 DPPH 自由基能力: 葉> $\overline{\Xi}>$ 根 ;水萃取液>乙醇萃取液

2.實驗數據:表 2A 不同溶劑萃取-清除 DPPH 自由基能力之檢測數據

實驗次數	1	2	3	平均吸光值	清除自由基(%)
萃取溶劑(蒸餾水)					
空白((蒸餾水)	0.268	0.267	0.269	0.268	
根(100%)	0.164	0.156	0.163	0.161	40%
莖(100%)	0.118	0.120	0.116	0.118	56%
葉(100%)	0.021	0.023	0.019	0.021	92%
萃取溶劑(乙醇)					
空白(乙醇)	0.291	0.290	0.292	0.291	
根(100%)	0.186	0.188	0.193	0.189	35%
莖(100%)	0.165	0.160	0.161	0.162	44%
葉(100%)	0.075	0.080	0.079	0.078	73%

(二)不同植株部位及萃取液濃度-清除 DPPH 自由基能力之測定。

1.實驗結果:(1)清除 DPPH 自由基能力,葉>莖>根。

(2)萃取液高濃度>低濃度,100%>70%>50%。

2.實驗數據:表 2B 水萃取液不同濃度-清除 DPPH 自由基能力之紀錄

濃度(魚腥草水萃取液)	清除自	清除自由基能力(%)			
V/V	根	莖	葉		
50%	15%	20%	40%		
70%	25%	35%	78%		
100%	40%	56%	92%		

(三)不同溫度萃取--清除 DPPH 自由基能力之測定。

1.實驗結果:清除 DPPH 自由基能力(1)100℃ > 70℃ > 50℃ (2) 葉>莖>根

2.實驗數據:表 2C 不同溫度萃取 — - 清除 DPPH 自由基能力之測定

濃度(魚腥草水萃取液)	清除 D	清除 DPPH 自由基能力(%)				
V/V	根	莖	葉			
50 ℃	21%	29%	48%			
70°C	27%	40%	83%			
100 ℃	50%	63%	96%			

【試驗三】魚腥草萃取液,螯合亞鐵離子之能力測定。

(一)不同溶劑萃取-螯合亞鐵離子之能力測定。

1.實驗結果:(1) 螯合亞鐵離子之能力,葉>莖>根。

(2)水萃取液>乙醇萃取液。

2.實驗數據:表 3A

實驗次數	1	2	3		
萃取溶劑(蒸餾水)				平均吸光值	螯合亞鐵離子 之能力(%)
空白((蒸餾水)	0.785	0.786	0.787	0.787	
根(100%)	0.477	0.467	0.472	0.472	40%
莖(100%)	0.113	0.112	0.105	0.110	86%
葉(100%)	0.038	0.037	0.042	0.039	95%
萃取溶劑(乙醇)					
空白(乙醇)	0.669	0.679	0.670	0.672	
根(100%)	0.432	0.438	0.441	0.437	35%
莖(100%)	0.266	0.268	0.270	0.268	60%
葉(100%)	0.144	0.138	0.141	0.141	79%

(二)不同植株部位及萃取液濃度-螯合亞鐵離子之能力測定。

1.實驗結果:(1) 螯合亞鐵離子之能力,葉>莖>根。

(2)萃取液高濃度>低濃度,100%>70%>50%。

2.實驗數據:表 3B 不同植株部位及萃取液濃度-螯合亞鐵離子之能力

濃度(魚腥草水萃取液)	螯合亞	螯合亞鐵離子能力(%)				
V/V	根	莖	葉			
50%	12%	19%	38%			
70%	23%	30%	77%			
100%	39%	53%	90%			

(三)不同溫度萃取-螯合亞鐵離子之能力測定。

1.實驗結果:(1) 螯合亞鐵離子之能力,葉>莖>根。

(2)萃取液高溫>低溫,100℃>70℃>50℃。

2.實驗數據:表 3C 不同溫度萃取-螯合亞鐵離子能力紀錄

濃度(魚腥草水萃取液)	螯合亞鐵	螯合亞鐵離子之能力(%)				
V/V	根	莖	葉			
50 ℃	20%	26%	41%			
70°C	24%	40%	80%			
100 ℃	48%	60%	93%			

陸、討論

一、魚腥草萃取液製備

本次實驗所用之魚腥草,是自然生長在校內香草植物園圍籬旁之植物且長得枝葉茂盛, 採摘時發現根部長達 15m,摘取魚腥草植株後用水清洗,除去表面灰塵,確保品質,並將 根、莖、葉分離;將魚腥草分別以 50℃、70℃及 100℃乾燥,再以高速粉碎機製成粉末,做 為不同溫度萃取調配成不同萃取液,提供做為不同溫度萃取液之抗氧化活性差異之比較。另 分別以 95%的乙醇,和蒸餾水兩種不同溶劑萃取,以電動攪拌器 500rpm 的速率,攪拌萃取 100 分鐘,經抽濾過濾去除沉澱物後,即為魚腥草萃取液之原液,視為 100%濃度,分別用 95 %的乙醇,和蒸餾水兩種不同溶劑,個稀釋成(v/v) 50%、70%及 100%之不同濃度備用。

二、探討魚腥草萃取液的抗氧化活性

抗氧化能力可視為一種還原能力,我們應用在課堂所學的氧化還原滴定,以 KMnO4溶液 做滴定實驗,由消耗 KMnO4溶液體積的多寡,初步可了解魚腥草萃取液是否具有還原性。 KMnO4滴定時,其消耗的量愈多,表示還原力愈大。實驗時不需使用指示劑,唯需加入硫酸,使反應在酸性下進行,較易觀察顏色的變化,滴定時溶液由原來的紫紅色會褪色成無色,當終點瞬間呈紅色時,即為滴定終點。由於魚腥草萃取液呈淡黃褐色,擔心因而影響實驗觀測,因此實驗前將魚腥草萃取液加入活性碳粉末,作脫色處理。

DPPH(2, 2-diphenyl-1-picrylhydrazyl)為一種較穩定的自由基,進行清除DPPH自由基能力測定時,當DPPH自由基與抗氧化物質作用,抗氧化物質提供電子或氫質子可清除自由基,因此DPPH自由基就會失去本身紫羅蘭色的特性,使吸光值的下降,在517nm波長照射下,利用分光光度計測定之吸光值減少百分比,可判斷樣品清除DPPH自由基能力之強弱,予以佐證萃取液的抗氧化力。另外DPPH試劑配製時需避光,使用時需新配製,並保存於棕色瓶子中,避免DPPH自由基結構照光變質。

螯合亞鐵離子之能力測定原理是當樣品螯合 Fe²⁺時,會造成 562nm 波長吸光值的降低,吸光值降低愈多,樣品之抗氧化能力愈強。因溶液易氧化變質,會影響實驗的準確度,實驗時才配製 Ferrozine 溶液和氯化亞鐵溶液。

三、抗氧化活性試驗方法

在本實驗中,我們以校內自然產出的魚腥草,作為抗氧化活性試驗篩選,並比較不同植株根莖葉、不同萃取溶劑、不同萃取濃度及不同萃取溫度,試驗抗氧化活性的差異;抗氧化活性試驗的評估方法包括清除 DPPH(2, 2-diphenyl-1-picrylhydrazyl)自由基、螫合亞鐵能力(Chelating activity on ferrous ion)及與過錳酸鉀溶液反應之還原能力(Reducing power test)之測定。另外影響魚腥草抗氧化活性之因子,如:季節 (春季、夏季、秋季、冬季)、乾燥方法(常溫乾燥、熱風乾燥和冷凍乾燥)、植株之栽植土壤性質、栽植不同地區等都可能對於生理活性成份或抗氧化活性造成影響,因時間不足,留待日後再繼續深入探究。

柒、結論

魚腥草不同植株部位根、莖、葉之萃取液抗氧化活性試驗比較:使用與過錳酸鉀反應之 還原能力測定、清除自由基 DPPH 能力測定及螯合亞鐵離子之能力測定等三種方法,實驗得 知:

- 一、萃取液和過錳酸鉀反應之還原力測定:還原力 :(1)不同植株,葉>莖>根 (2)不同萃取液濃度,100%>70%>50% (3)不同溫度萃取,100℃>70℃>50℃ (4) 不同溶劑萃取,水萃取液>乙醇萃取液。
- 二、清除自由基 DPPH 能力:葉>莖>根。當葉之水萃液濃度(V/V)達 70%,清除自由基 DPPH 能力可達 50%以上;葉之水萃液濃度為 100%時,去除率可達 93%;莖之水萃液濃度(V/V)僅在 100%(原液)時,去除 DPPH 能力才可達 50%;而根之水萃液去除 DPPH 能力 遠低於 50%,效力低微(實驗結果,表 2A、2B)。
- 三、螯合亞鐵離子之能力:魚腥草萃取液之濃度越高,螯合亞鐵離子能力越強,100%>70%>50%;魚腥草萃取液螯合亞鐵離子能力是葉>莖>根。葉之水萃液濃度為100%時, 螯合亞鐵離子之能力可達93%,但若改為乙醇萃取液,同為100%濃度,螯合亞鐵離子 能力僅79%(表3A)。
- 四、綜合上述:魚腥草根、莖及葉皆具有抗氧化活性,無論是水萃取液或乙醇萃取液,其還原力、清除自由基能力或螯合亞鐵離子之能力,皆以葉萃取液最強,莖萃取液次之,根萃取液最弱。

捌、參考資料

- 一、黄榮茂、王禹文,1992,化學化工百科辭典,曉園出版社。
- 二、黃得時,2018,高中基礎化學實驗(二),龍騰出版社。
- 三、Neil Campbell, 2004, 生物學(下冊), 偉明圖書有限公司
- 四、王美玲,2017,高中基礎生物(上),翰林出版社。
- 五、陳盈君,2010,乾燥條件對魚腥草素成份影響之研究,台灣碩士論文。
- 六、林威宏,2009,影響魚腥草與芭樂葉萃取物之抗氧化活性探討,台灣碩士論文。