嘉義市第 37 屆中小學科學展覽會 作品說明書

科 别:生活與應用科學科(2)(環保與民生)

組 别:國中

作品名稱:汽水就是要這樣喝-

探討汽水產生氣泡的影響機制

關 鍵 詞: 氣泡、杯子、3D 列印

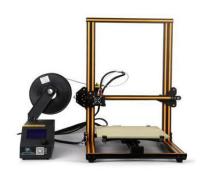
編 號:

摘要

偶然看到可口可樂推出專屬杯,聲稱氣泡是細膩的保存在液體內,不會黏著於杯子上層,想了解杯子設計的奧秘。本實驗以不同的杯型、杯子材質和汽水溫度,來探討汽水產生氣泡的影響機制,並進而建議飲用汽水的較佳方式。研究結果顯示,可樂專用玻璃杯的氣泡體積偏小,在開口杯和較小杯底面積的杯型,產生的氣泡會較小,較可以保留汽水二氧化碳氣體,建議飲用 235ml 易開罐可樂;汽水入口時溫度升高冒出大量氣泡,產生清新爽口的氣泡感;市售不同杯子材質的可樂,建議購買玻璃瓶的可樂,因為產生氣泡最小,大罐保特瓶可樂分裝也建議用小玻璃杯。可樂專用玻璃杯的開口設計、小杯底面積和玻璃材質,並且加入冰塊飲用,都有效保留氣體的汽水,產生綿密氣泡感。

壹、研究動機

大口暢飲冰涼可樂,享受氣泡直衝喉嚨的瞬間快感,就是有股令人難以言喻的爽度!每當宴會聚會時,總是少不了汽水,看著杯中汽水的氣泡從杯底沿著杯緣慢慢地跑上來,覺得十分地有趣。


有次逛街時,偶然看到了可口可樂推出專屬杯,專屬杯採用葡萄酒的杯型,聲稱氣泡是 細膩的保存在液體內,不會黏著於杯子上層。這個論點引起我們的好奇,想探討是否真的不 同的杯子外型會導致汽水狀態與口感的改變,所以展開了這次的科展實驗。

貳、實驗目的

- 一、觀察汽水倒入「可樂專用玻璃杯」與「普通玻璃杯」,汽水冒泡情況的差異。
- 二、觀察汽水倒入「不同開口大小」的 3D 列印塑膠杯,汽水冒泡情况的差異。
- 三、觀察汽水倒入「不同杯底面積」的 3D 列印塑膠杯,汽水冒泡情況的差異。
- 四、觀察「不同溫度」的汽水倒入杯子,汽水冒泡情況的差異。
- 五、觀察汽水倒入「不同材質」的杯子,汽水冒泡情況的差異。

參、研究設備及器材

- 一、實驗材料:汽水(可口可樂、雪碧)。
- 二、實驗器具:錐形瓶、燒杯、量杯、馬克杯、3D 列印機(圖 1)、123D Design 軟體、
 - 可樂專用玻璃杯(圖 2)、玻璃杯、免洗紙杯、免洗塑膠杯。
- 三、觀測工具: DV 攝影機、影像處理軟體(威力導演)。

(圖 1 3D 列印機—CR10)

(圖 2 RIEDEL×可口可樂聯名可樂杯)

肆、文獻探討

查詢相關資料,探討汽水內氣泡產生的機制:

- 一、氣泡生成:打開一個瓶罐,液面上二氧化碳氣體的壓力就會急遽下降,液體中的二氧 化碳分子便因為壓力減少而溶解度減少,二氧化碳分子便從液體逸出。
- 二、成核位置:原本溶在水中的二氧化碳要形成氣泡,必須要有成核位置(nucleation sites); 成核位置可以是一個溶液表面的刮痕或是懸浮粒子,二氧化碳會先在成核位置 形成微泡,然後離開並上升,在上升的過程中與其他微泡結合然後逐漸變大。

伍、研究過程或方法

- 1.觀察不同杯型對汽水冒泡的影響。
- 2.觀察不同溫度對汽水冒泡的影響。
- 3.觀察不同杯子材質對汽水冒泡的影響。

1.探討可樂專用玻璃杯的奧秘 2.探討汽水飲用的較佳方法

一、汽水的種類與保存辦法:

本實驗採用可口可樂 330ml 易開罐,冷藏於 4℃冰箱(圖 3), 實驗時將可口可樂從冰箱取出並立即打開,倒入容器內進行 實驗。

(圖3 冷藏於冰箱的汽水)

- 二、實驗拍攝與分析方法:
- (一) 觀察汽水冒出氣泡數量:

將汽水倒入容器後,用固定在腳架上的 DV 攝影機(圖 4),長時間錄製汽水冒泡的情況,再利用影像處理軟體(威力導演)將影片速度調慢 10 倍,然後在電腦播放影片,記錄汽水冒泡的情況(圖 5)。

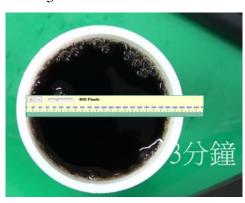
(圖 4 攝影機錄製汽水冒泡)

(圖 5 分析汽水冒泡的情况)

(二)測量汽水冒出氣泡體積:

1.排水集氣法

起初想要設計排水集氣法來測量汽水所冒出氣體體積,先將杯子密封,再用塑膠管將汽水 冒出的氣體導入裝滿水的量筒裡(圖 6),利用排水集氣法來量測汽水所冒出氣體體積。 但是後來發現汽水所冒出的氣體壓力難以排開量筒裡的水,加上二氧化碳會略溶於水, 所以此實驗設計無法採用。



(圖 6 排水集氣法設計)

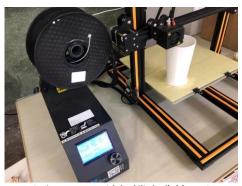
2.電腦螢幕量尺工具測量:

利用螢幕量尺軟體 Jruler(圖 7)測量畫面距離大小,利用推導公式推算氣泡的半徑大小:

再根據氣泡半徑推算氣泡體積= $\frac{4}{3} \times \pi \times$ 半徑³

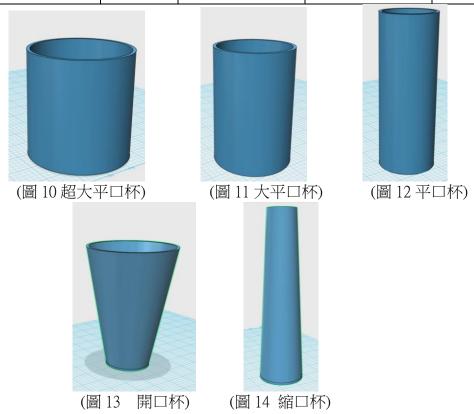
(圖7 螢幕量尺軟體 Jruler 測量畫面距離大小)

測量每分鐘的冒出氣泡體積(多次量測取平均值),乘以所計算的每分鐘氣泡冒出數量,即 求得每分鐘汽水冒出氣泡的體積。


三、3D 列印塑膠杯:

(一) 利用 123D Design 軟體繪製杯子(圖 8),並利用 3D 列印機將杯子印製出來(圖 9),3D 列印 膠條材質為 PLA。

(圖 8 123D Design 軟體繪製杯子)


(二) 各種不同設計的 3D 列印杯型(表 1):

(圖9 3D 列印機印製杯子)

(表 1 不同設計的 3D 列印杯型)

編號	名稱	圖例	杯底直徑	杯口直徑	杯子高度
1號	超大平口杯	圖 10	94mm	94mm	100mm
2號	大平口杯	圖 11	74mm	74mm	100mm
3號	平口杯	圖 12	54mm	54mm	160mm
4號	開口杯	圖 13	54mm	80.3mm	160mm
5 號	縮口杯	圖 14	54mm	35.8mm	230mm

六、實驗設計:

(一) 觀察汽水倒入「可樂專用玻璃杯」與「普通玻璃杯」,汽水冒泡情況的差異。:

將冷藏(4℃)的 330 毫升可樂倒入「可樂專用玻璃杯」與「普通玻璃杯」(圖 15),錄影紀錄可樂在這兩種杯子冒泡的情況,並分析兩者氣泡大小的不同。

(圖 15 可樂倒入「可樂專用玻璃杯」與「普通玻璃杯」)

(二) 觀察汽水倒入「不同開口大小」的 3D 列印塑膠杯,汽水冒泡情况的差異:

將冷藏(4℃)的 330 毫升可樂倒入 3 號—平口杯、4 號—開口杯和 5 號—縮口杯(圖 16), 比較在相同杯底面積的情況下,不同的開口大小(也就是杯壁斜面角度),對汽水氣泡的冒泡情 況的影響。並錄影紀錄分析冒出氣泡的數量和氣泡的體積,來推算汽水冒出氣體的體積。

(圖 16 **3**號─平□杯、**4**號─開□杯和 **5**號─縮□杯)

因為 3D 列印塑膠杯是白色不透明的材質,所以無法從側面觀察氣泡的狀態,所以進一步將可樂倒入透明玻璃材質的量杯(開口杯)、燒杯(平口杯)和錐形瓶(縮口杯)(圖 17),觀察氣泡在不同杯壁斜面角度下的氣泡附著情況,來推論造成汽水冒泡情況差異的原因。

(圖 17 錐形瓶、燒杯和量杯)

(三) 觀察汽水倒入「不同杯底面積」的 3D 列印塑膠杯,汽水冒泡情况的差異:

將冷藏(4℃)330毫升可樂倒入1號—超大平口杯、2號—大平口杯和3號—平口杯(圖 18), 比較在相同杯壁角度的情況下,不同的杯底面積,對汽水氣泡的冒泡情況的影響。並錄影紀 錄分析冒出氣泡的數量和氣泡的體積,來推算汽水冒出氣體的體積。

(圖 18 **1**號─超大平□杯、2號─大平□杯和 **3**號─平□杯)

因為可口可樂不透明難以同時觀察杯壁與杯底氣泡,於是改用透明的雪碧汽水倒入玻璃燒杯裡,拍照記錄汽水氣泡在杯壁和杯底的附著情況,並分析推算杯壁和杯底兩種附著氣泡體積的大小差異,來推論造成汽水冒泡情況差異的原因。

(四) 觀察「不同溫度」的汽水倒入杯子,汽水冒泡情况的差異:

將冷藏(4°C)和常溫(25°C)的 330 毫升可樂倒入 3 號—平口杯,比較在相同的杯子裡,不同的汽水溫度,對汽水氣泡的冒泡情況的影響,並錄影紀錄分析冒出氣泡的數量。

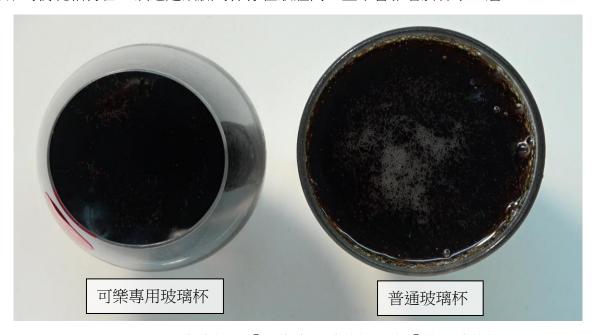
- (五) 觀察汽水倒入「不同材質」的杯子,汽水冒泡情况的差異:
- 1. 不同材質的平口杯對汽水冒泡情況的影響:

將冷藏(4℃)倒入不同材質的平口杯,包括塑膠杯、玻璃杯、鋁罐杯和馬克杯(圖 19),比較 在相同杯子外型裡,不同的杯子材質,對汽水氣泡的冒泡情況的影響。並錄影紀錄分析冒出 氣泡的數量和氣泡的體積,來推算汽水冒出氣體的體積。

(圖19 塑膠杯、玻璃杯、鋁罐杯和馬克杯)

2.不同材質的餐廳杯子對汽水冒泡情況的影響:

當在餐廳吃飯時,通常是一瓶大罐保特瓶可樂大家一起分著喝,餐廳通常也會提供塑膠免 洗杯、紙免洗杯或小玻璃杯(圖 20)。比較在相似外型與大小的餐廳杯子,不同的杯子材質, 對汽水氣泡的冒泡情況的影響。並錄影紀錄分析冒出氣泡的數量和氣泡的體積,來推算汽水 冒出氣體的體積。


(圖 19 塑膠免洗杯、紙免洗杯和小玻璃杯)

陸、實驗結果

一、汽水倒入「可樂專用玻璃杯」與「普通玻璃杯」,汽水冒泡情況的差異

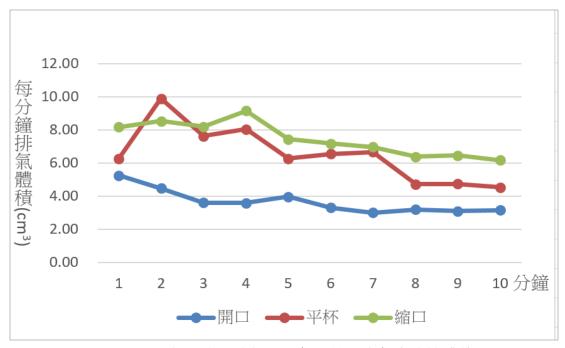
控制變因	操縱變因	應變變因
◆杯子材質(玻璃) ◆汽水種類(可□可樂) ◆汽水體積(330ml) ◆汽水溫度(冷藏 4°C)	◆杯子外型 (可樂專用玻璃杯和普通玻璃杯)	◆汽水冒出的 氣泡體積

將汽水倒入「可樂專用玻璃杯」與「普通玻璃杯」(圖 21),發現「普通玻璃杯」汽水表面不停冒出氣泡,杯緣也附著不少大氣泡;「可樂專用玻璃杯」汽水表面冒氣泡稀少,且氣泡的體積偏微小,兩種玻璃杯的平均氣泡體積大小如表 2。實驗證明「可樂專用玻璃杯」跟宣傳介紹的情況相符合:氣泡是細膩的保存在液體內,且不會黏著於杯子上層。

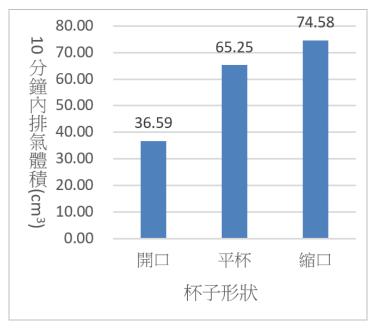
(圖 21 汽水倒入「可樂專用玻璃杯」與「普通玻璃杯」)

(表 2 不同杯型的氣泡半徑和氣泡體積)

杯型	氣泡半徑(mm)	氣泡體積(mm³)
可樂專用玻璃杯	0.53	0.62
普通玻璃杯	1.12	5.87

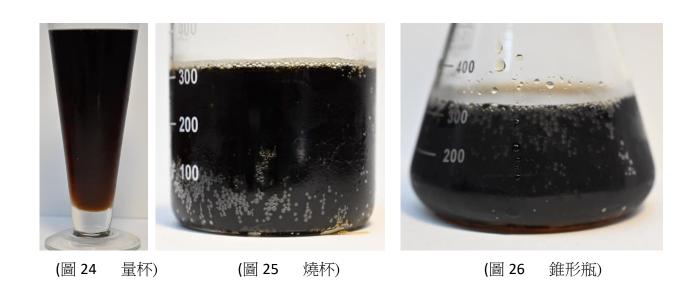

二、「不同開口大小」的 3D 列印塑膠杯,對汽水冒泡情況的影響:

控制變因	操縱變因	應變變因
◆杯子底面積◆汽水種類(可口可樂)◆汽水體積(330ml)◆汽水溫度(冷藏 4℃)◆杯子材質(3D 列印—PLA)	◆杯子開口大小(杯子壁面角度) (3 號平口杯、4 號開口杯、 5 號縮口杯)	◆汽水冒出的 氣泡體積


汽水倒入三種不同杯口大小杯子,發現冒出氣泡大小:縮口杯>平口杯>開口杯(表 3); 觀察每分鐘所冒出氣泡體積:縮口杯>平口杯>開口杯(圖 22),10分鐘內汽水冒泡總體積: 縮口杯>平口杯>開口杯(圖 23)。

(表 3 不同杯口大小杯子的冒泡情形)

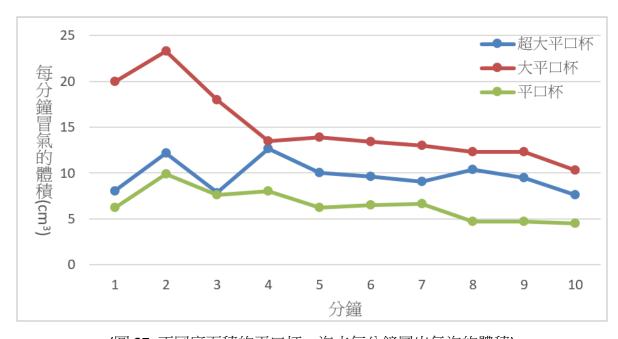
組別	杯口直徑	杯底直徑	10 分鐘內 氣泡總數量 (個)	氣泡 平均半徑 (cm)	氣泡 平均體積 (cm³)	10 分鐘內 冒氣總體積 (cm³)
開口杯	80.3mm	54.0mm	3772	0.155	0.016	36.59
平口杯	54.0mm	54.0mm	4171	0.149	0.014	65.25
縮口杯	35.8mm	54.0mm	3362	0.17	0.022	74.58



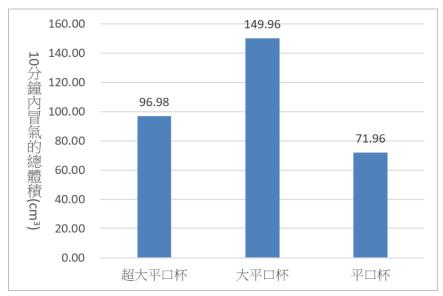
(圖 22 不同杯口大小的杯子,每分鐘冒出氣泡的總體積)

(圖 23 不同杯口大小的杯子,10 分鐘內冒出氣泡的總體積)

進一步將汽水倒入量杯(開口杯,圖 24)、燒杯(平口杯,圖 25)和錐形瓶(縮口杯,圖 26), 觀察杯壁氣泡附著的情況,發現量杯(開口杯)杯壁幾乎沒有氣泡附著,而燒杯(平口杯)和錐 形瓶(縮口杯)杯壁都有許多氣泡附著。

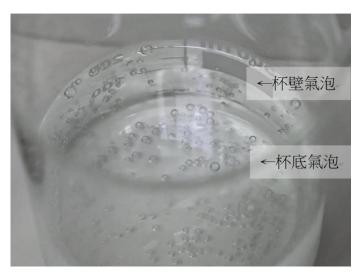

三、觀察汽水倒入「不同杯底面積」的 3D 列印塑膠杯,汽水冒泡情況的差異:

控制變因	操縱變因	應變變因
◆汽水種類(可口可樂)◆汽水體積(330ml)◆汽水溫度(冷藏 4℃)◆杯子材質(3D 列印—PLA)◆杯子壁面角度(平口杯)	◆杯子底面積 (超大平口杯—94mm、 大平口杯—74mm、 平口杯—54mm)	◆汽水冒出的氣泡體積


將汽水倒入三種不同底面積的平口杯,發現冒出氣泡大小:超大平口杯>大平口杯> 平口杯(表 4);觀察每分鐘所冒出氣泡體積:大平口杯>超大平口杯>平口杯(圖 27),10 分鐘 內汽水冒泡總體積:大平口杯>超大平口杯>平口杯(圖 28)。

(表 4 不同底面積的平口杯的冒泡情形)

組別	杯底直徑	10 分鐘內 氣泡總數量 (個)	氣泡 平均半徑 (cm)	氣泡 平均體積 (cm³)	10 分鐘內 冒氣總體積 (cm³)
超大平口杯	94.0mm	4086	0.176	0.023	96.98
大平口杯	74.0mm	8563	0.160	0.017	149.96
平口杯	54.0mm	4171	0.149	0.014	65.25

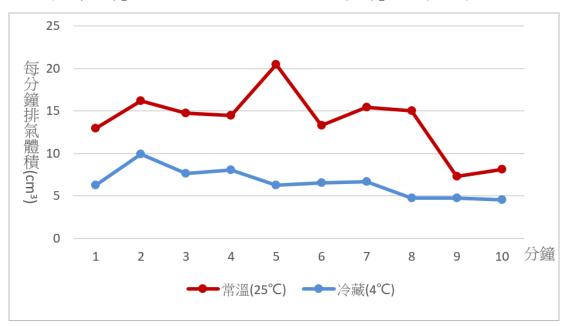


(圖 27 不同底面積的平口杯,汽水每分鐘冒出氣泡的體積)

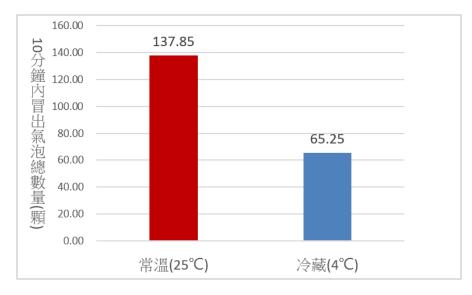
(圖 28 不同底面積的平口杯,汽水 10 分鐘內冒出氣泡的總體積)

進一步將汽水(雪碧)倒入燒杯(平口杯),如圖 29,透過螢幕量尺軟體 Jruler 量測並推算氣泡體積,觀察發現在杯底的氣泡會比較大,杯壁的氣泡會比較小(表 5)。汽水在超大平口杯的底部接觸面積比較大,所以較多氣泡會從底部凝聚冒出,因此觀察到的氣泡體積比較大;汽水在平口杯的側面杯壁的接觸面積比較大,所以較多氣泡會從杯壁凝聚冒出,因此觀察到的氣泡體積比較小。

(圖 29 汽水在燒杯附著的氣泡)


(表 5 汽水在杯壁與杯底的氣泡性質)

氣泡位置	氣泡平均半徑(cm)	氣泡平均體積(cm³)
杯壁	0.0899	0.0030
杯底	0.1145	0.0062


四、汽水「溫度」對汽水冒泡情況的影響:

控制變因	操縱變因	應變變因
◆汽水種類(可口可樂) ◆汽水體積(330ml) ◆杯子材質(3D 列印—PLA) ◆杯子外型(3 號平口杯)	◆汽水溫度 (冷藏 4℃和常溫 25°C)	◆汽水冒出的氣泡體積

將汽水冷藏在冰箱(4° C)和放置於常溫(25° C)下,倒入 3 號平口杯(3D 列印的杯子),觀察每分鐘所冒出氣泡數量,發現「常溫(25° C)」汽水冒泡數量明顯高於「冷藏(4° C)」汽水(圖 30), 15 分鐘內「常溫(25° C)」汽水冒泡總數量遠高於「冷藏(4° C)」汽水(圖 31)。

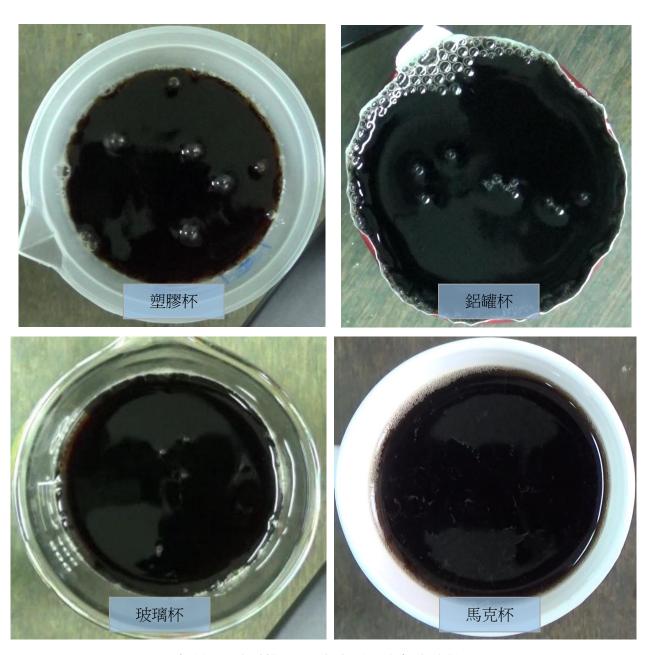
(圖 30 不同溫度的汽水,每分鐘冒出氣泡的體積)

(圖 31 不同溫度的汽水,10 分鐘內冒出氣泡的總體積)

五、杯子「材質」對汽水冒泡情況的影響:


(一) 不同材質的平口杯對汽水冒泡情況的影響:

控制變因	操縱變因	應變變因
◆汽水種類(可□可樂)◆汽水溫度(冷藏 4°C)◆汽水體積(330ml)◆杯子外型(平□杯)	◆杯子的材質 (塑膠、玻璃、鋁罐、馬克杯)	◆汽水冒出氣泡的體積


將汽水倒入不同材質的平口杯,透過螢幕量尺軟體 Jruler 量測並推算氣泡體積,發現所冒出的氣泡大小:塑膠杯>鋁罐杯>玻璃杯>馬克杯(表 6、圖 32,圖 33),其中塑膠杯所冒出的氣泡最大,馬克杯冒出的氣泡則非常的小。

(表 6 不同材質的杯子,汽水冒出氣泡的特性)

杯子材質	氣泡半徑(mm)	氣泡體積(mm³)
塑膠杯	2.01	39.22
鋁罐杯	1.39	12.12
玻璃杯	1.05	6.04
馬克杯	0.42	0.31

(圖 32 不同材質的杯子,汽水冒出氣泡的特性)

(圖 33 各種不同材質杯子,汽水所冒出氣泡的情形)

(二) 不同材質的餐廳杯子對汽水冒泡情況的影響:

控制變因	操縱變因	應變變因
◆汽水種類(可□可樂)◆汽水溫度(冷藏 4°C)	◆餐廳杯子的材質 (塑膠免洗杯、紙免洗杯、 小玻璃杯)	◆汽水冒出氣泡的體積
◆汽水體積(235ml)		
◆杯子外型(免洗杯)	71 MX MY 17	

將汽水倒入不同材質的餐廳杯子,透過螢幕量尺軟體 Jruler 量測並推算氣泡體積,發現所冒出的氣泡大小:塑膠免洗杯≒紙免洗杯>玻璃杯(表 7、圖 34),玻璃杯的氣泡最小,而塑膠免洗杯和紙免洗杯的氣泡最大。

(表7 不同材質的餐廳杯子,汽水鐘冒出氣泡的特性)

杯子材質	氣泡半徑(mm)	氣泡體積(mm³)
塑膠免洗杯	2.46	62.48
紙免洗杯	2.42	60.63
小玻璃杯	1.07	5.12

(圖 34 不同材質的餐廳杯子,汽水中冒出氣泡的特性)

柒、討論

一、汽水倒入「可樂專用玻璃杯」與「普通玻璃杯」,汽水冒泡情況的差異:

經過實驗發現,將汽水倒入「可樂專用玻璃杯」汽水表面冒氣泡稀少,且氣泡的體積偏 微小;將汽水倒入「普通玻璃杯」,發現「普通玻璃杯」汽水表面不停冒出氣泡,杯緣也附著 不少大氣泡。而且「可樂專用玻璃杯」冒出的氣泡明顯小於「普通玻璃杯」,所以「可樂專用 玻璃杯」可以細膩的保存氣泡在液體內,且不會黏著於杯子上層。

二、汽水倒入「不同開口大小」的 3D 列印塑膠杯,汽水冒泡情况的差異:

經過實驗發現,發現冒出氣泡大小:縮口杯>平口杯>開口杯,10分鐘內汽水冒泡總體 積:縮口杯>平口杯>開口杯,「開口杯」比較能夠保留汽水內的氣體。

為了方便觀察,將汽水倒入透明玻璃容器,觀察杯壁氣泡的附著情況,發現量杯(開口杯) 杯壁幾乎沒有氣泡附著,而燒杯(平口杯)和錐形瓶(縮口杯)杯壁都有許多氣泡附著。

摩擦力的定義為:摩擦力與物體相對運動的方向相反,且平行於接觸面。所以當氣泡在 燒杯(平口杯)和錐形瓶(縮口杯)內沿著杯壁移動時,都產生杯壁反方向的摩擦力(圖 35、圖 36), 使氣泡在杯子內移動緩慢,滯留時間增加,也使可樂的氣體更多溶解於杯壁汽泡裡,釋放更 多二氧化碳氣體;而氣泡在量杯(開口杯)裡因為沒有沿著杯壁移動,所以沒有杯壁產生的摩擦 力很微小(圖 37),所以氣泡會直接上浮,不會附著在杯壁,汽水的二氧化碳於是被保留住。

(圖 35 燒杯壁氣泡摩擦力)

(圖 36 錐形瓶杯壁氣泡摩擦力)

(圖 37 量杯杯壁氣泡摩擦力)

三、汽水倒入「不同杯底面積」的 3D 列印塑膠杯,汽水冒泡情况的差異:

進一步觀察發現在杯底的氣泡會比在杯壁的氣泡大,這是因為物體在水中的浮力來自於上下的壓力差(圖 38),當氣泡附著在杯壁時,其上下壓力差明顯(圖 39),氣泡產生的浮力較大,所以氣泡比較容易往上漂浮;當氣泡附著在杯底時,因為氣泡底部緊黏著杯子底部,所以其向上壓力不明顯,使得向下壓力緊壓著氣泡(圖 40),讓氣泡難以上浮,必須等杯底的氣泡聚集體積較大時,產生足夠的浮力往上漂浮。

(圖 38 浮力來自上下壓力差) (圖 39 杯壁氣泡的上下壓力) (圖 40 杯底氣泡的壓力)

市面上常見有兩種可口可樂易開罐的容量(圖 41),一種為 330ml,定價每罐 20 元,平均 每毫升 0.06 元;一種為 235ml,定價每罐 14 元,平均每毫升也是 0.06 元。兩種容量的可口可 樂單位價格都相同,但是因為容器尺寸的不同(表 8),建議如果要保留可樂的二氧化碳和維持 綿密的氣泡感,可以飲用 235ml 的可樂,因為其底部面積較小,杯底產生的大氣泡也會較少, 側面面積較大,杯壁的小氣泡也會較多。

ORGINALTANT COCOL

(表 8 兩種易開罐可樂的高度與底面積)

可樂種類	罐子高度	罐子底部面積
330ml	12.0cm	36.30cm ²
235ml	13.5cm	20.42cm ²

(圖 41 兩種易開罐可樂)

實際飲用兩種可樂,我們發現 235ml 的易開罐可樂氣泡十分綿密,綿密的氣泡感甚至會讓人感覺有嗆辣感;飲用 330ml 的易開罐可樂的氣泡感較低,反而讓會可樂的甜味較凸顯,可樂的飲用口感會比較甜。

四、汽水「溫度」對汽水冒泡情況的影響:

經過實驗發現,常溫(25℃)汽水每分鐘冒泡數量明顯高於冷藏(4℃) 汽水,15 分鐘內常溫 (25℃)汽水冒泡總數量遠高於冷藏(4℃)可樂。這是因為氣體的溶解度會隨著液體溫度的增加 而越來越小,所以當液體的溫度增加時,所冒出的氣泡數量就會增加。所以當汽水飲入口中時,因為口腔內的溫度較高,就會冒出大量氣泡,產生清新爽口的氣泡感。

五、杯子「材質」對汽水冒泡情況的影響:

(一) 不同材質的平口杯對汽水冒泡情況的影響:

實驗發現,汽水在不同材質的杯子,冒出氣泡大小為:塑膠杯>鋁罐杯>玻璃杯>馬克杯,塑膠杯所冒出的氣泡最大,鋁罐杯的氣泡大於玻璃杯,馬克杯冒出的氣泡則非常的小。這是因為塑膠杯對氣泡的附著力最強,所以氣泡需要較大的體積來產生足夠浮力擺脫杯子的附著力(圖 42);馬克杯的材質為陶瓷,對氣泡的附著力最弱,所以非常小的氣泡體積就可以來產生足夠的浮力擺脫杯子的附著力。

(圖 42 氣泡的受力情形)

市面上常見有三種容器材質的可樂,包括寶特瓶(圖 43)、玻璃瓶(圖 44)和鋁罐(圖 45)。如果要保留可樂的二氧化碳和維持綿密的氣泡感,不建議購買塑膠材質的保特瓶可樂(因為產生氣泡較大),而購買玻璃瓶的可樂又比鋁罐的好(因為玻璃瓶產生氣泡最小)。如果是大瓶裝的保特瓶可樂,則建議可以分裝到陶瓷馬克杯裡,才能產生綿密氣泡感(因為產生氣泡非常小)。

(圖 43—寶特瓶可樂)

(圖 44—玻璃瓶可樂)

(圖 45—鋁罐可樂)

(二) 不同材質的餐廳杯子對汽水冒泡情況的影響:

將汽水倒入不同材質的餐廳杯子,透過螢幕量尺軟體 Jruler 量測並推算氣泡體積,發現所冒出的氣泡大小:塑膠免洗杯≒紙免洗杯>小玻璃杯,小玻璃杯的氣泡最小,而塑膠免洗杯和紙免洗杯的氣泡最大。

紙杯的材質雖然是紙,但是在內壁有塗了一層 PE 塑膠膜,所以氣泡大小和塑膠免洗杯差不多,而且體積都偏大。所以當在餐廳時,如果有一瓶大罐保特瓶可樂大家一起分著喝,不建議使用塑膠免洗杯和紙免洗杯,建議使用小玻璃杯,才能保留汽水的二氧化碳,且飲用時會產生綿密氣泡咸(因為產生氣泡較小)。

捌、結論

一、在「可樂專用玻璃杯」與「普通玻璃杯」裡,汽水冒泡情況的差異:

汽水在「普通玻璃杯」不停冒出氣泡,杯緣也附著不少大氣泡;汽水在「可樂專用玻璃杯」 表面冒氣泡稀少,且氣泡的體積偏微小。所以汽水在「可樂專用玻璃杯」裡,氣泡是細膩的 保存在液體內,且不會黏著於杯子上層。

二、汽水倒入「不同開口大小」的 3D 列印塑膠杯,汽水冒泡情況的差異:

汽水在「開口杯」因為杯壁不會附著氣泡,冒出氣體較少,較能夠保留汽水內的氣體; 汽水在「平口杯」和「縮口杯」的杯壁會附著氣泡,冒出氣泡較多,比較不能夠保留汽水內 的氣體

三、汽水倒入「不同杯底面積」的 3D 列印塑膠杯,汽水冒泡情況的差異:

汽水在杯底的氣泡會比在杯壁的氣泡大,所以較大的杯底面積,平均產生的氣泡會比較大,釋放較多氣體;所以較小的杯底面積,平均產生的氣泡會比較小,釋放較少氣體,飲用時也會產生綿密的氣泡感。

四、汽水「溫度」對汽水冒泡情況的影響:


常溫可樂冒出氣泡數量明顯高於冷藏(4°C) 汽水,因為氣體的溶解度會隨著液體溫度的增加而越來越小,所以當汽水飲入溫度較高的□腔時,就會冒出大量氣泡,產生清新爽□的氣泡感。

五、杯子「材質」對汽水冒泡情況的影響:

汽水在不同材質的杯子,冒出氣泡大小為:塑膠杯>鋁罐>玻璃瓶>馬克杯,這是因為杯子材質對氣泡附著力的不同所造成的結果。如果要保留可樂的二氧化碳和維持綿密的氣泡感,不建議購買塑膠材質的保特瓶可樂,最建議購買玻璃瓶的可樂。

在外面餐廳飲用大罐保特瓶可樂,建議用小玻璃杯,因為產生氣泡較小,能夠保留汽水 的二氧化碳,且飲用時會產生綿密氣泡感,不建議使用塑膠免洗杯和紙免洗杯。

六、綜合以上研究發現,**我們推論可樂專用玻璃杯的設計原理**如圖 46:

(圖 46 可口可樂專用杯的設計原理)

玖、參考資料及其他

- 一、酒杯理論打造可樂杯 飲料變好喝的令人上瘾。2017 年 12 月 13 日,引自-Great Daily https://www.twgreatdaily.com/cat42/node1764411
- 二、選對杯子,讓咖啡更好喝!2018 年 12 月 4 日,引自:一杯咖啡·夢想成真
 https://www.cometrue-coffee.com/blog/cup-shape-size-material.amp?fbclid=lwAR3pFRqbClr03Ev
 _JxNejpb9ZBQ20vQ2fWRSaZOVgrlth6W-ofRi7w2b3LM